Air Express

input file: express.in
Fly It Today! (FIT), an air express company, charges different amounts for packages depending on their weight. For example, one set of rates may be:

Package weight Cost per pound

0 to 9 pounds	$\$ 10$
10 to 49 pounds	$\$ 5$
50 to 99 pounds	$\$ 3$
100 pounds or more	$\$ 2$

This rate structure has upset some customers who have realized that it costs less to ship a 10 pound package $(\$ 50)$ than an 8 pound package $(\$ 80)$ and it costs less to ship a 100 pound package (\$200) than a 90 pound one (\$270). FIT wants to check packages to determine if the customer can pay a lower price by adding weight to the package. If this is the case, they want to know the minimum weight to be added to obtain the lowest price possible.

Input

The input file will have one or more data sets. Each data set begins with exactly 4 lines, giving the shipping rates. These will be:

weight $_{1}$	rate $_{1}$
weight $_{2}$	rate $_{2}$
weight $_{3}$	rate $_{3}$
rate $_{4}$	

You may assume all of these values are positive integers less than 1001 and weight $_{1}<$ weight $_{2}<$ weight $_{3}$. The values represent the rate table below:

Weight range	Rate
$0 \rightarrow$ weight $_{1}$	rate $_{1}$
weight $_{1}+1 \rightarrow$ weight $_{2}$	rate $_{2}$
weight $_{2}+1 \rightarrow$ weight $_{3}$	rate $_{3}$
weight $_{3}+1 \rightarrow 1000$	rate $_{4}$

There will then be 1 or more lines of customer package sizes. Each of these will be a positive integer less than 1001. The end of customer package sizes is indicated by the single integer 0 .

The end of input will be indicated by end of file.

Output

For each input set, print the input set number. Then, for each of the customer package sizes in the input set, create a line of output formatted as follows:

Weight (<w>) has best price $\$<$ price> (add <p> pounds)
Where $\langle\mathrm{w}>$ is the weight of the customer package, as defined in the input set, <price> is the lowest price the customer can pay to send that package (with, optionally, added weight) based on the input set shipping rates, and $<\mathrm{p}>$ is the number of pounds to be added to the package to obtain the price ($<\mathrm{p}>$ must be greater than or equal to 0). If more than one different weight results in the best possible price, use the smaller weight.

Have a blank line after the output for each input set.

Sample input

```
9 10
```

495
993
2
8
10
90
100
200
0
1010
2020
3030
100
1
12
29
50
0

Sample output (corresponding to sample input)

```
Set number 1:
Weight (8) has best price $50 (add 2 pounds)
Weight (10) has best price $50 (add 0 pounds)
Weight (90) has best price $200 (add 10 pounds)
Weight (100) has best price $200 (add 0 pounds)
Weight (200) has best price $400 (add O pounds)
Set number 2:
Weight (1) has best price $10 (add 0 pounds)
Weight (12) has best price $240 (add 0 pounds)
Weight (29) has best price $870 (add 0 pounds)
Weight (50) has best price $5000 (add 0 pounds)
```

